Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5

উচ্চ মাধ্যমিক গনিত লেকচারঃ লিমিট বা সীমা (limit)

Googleplus Pint
#1
লিমিট বা সীমা (limit)
————————
ক্যালকুলাস জানতে হলে লিমিট
ভালো করে জানা জরুরী। এখানে
লিমিটের একেবারে প্রাথমিক
কিছু কথা বলা হয়েছে। এটা কী,
কেন এর প্রয়োজন হলো সেটা
কিছুটা বলেছি।
ভিডিও: ক্যালকুলাসের অ-আ-ক-খ:
ভগর ভগর ২ক (calculus 2,1)
ফাংশনঃ
লিমিট বুঝতে গেলে আগে
ফাংশনের ধারণা থাকা দরকার। খুব
সহজ ভাবে বললে ফাংশন একটা
মেশিনের মতো। এখানে কিছু একটা
‘ইনপুট’ দিলে কিছু একটা ‘আউটপুট’
পাওয়া যায়। যেমন কমলার জুস
বানানোর মেশিন। এখানে কমলা
দিলে জুস পাওয়া যায়। যদি এই
মেশিনটার নাম হয় f, আমরা এই
মেশিনটাকে ফাংশনের আকারে
এভাবে লিখতে পারি f
(কমলা)=কমলার জুস, প্রথমে যে f, এটা
হলো ফাংশনের নাম, এটার নাম
আমরা যা খুশি তাই দিতে পারি,
এরপর ব্র্যাকেটের ভিতরে আছে
ইনপুট আর সমান চিহ্নের পরে আছে
আউটপুট। ফাংশনকে আসলে আরও
অনেকভাবে প্রকাশ করা যায়। তবে
এভাবে প্রকাশ আমাদের বার বার
করতে হবে, ক্যালকুলাস জানতে
হলে। তাহলে, যদি একটা ফাংশনকে
আমরা এভাবে লিখি f(x)=x² , সেটা
দিয়ে আমরা বুঝব, এই ফাংশনের
কাজ হলো যাকে পাবে তাকে বর্গ
করবে।
f(-3)=(-3)²=9
f(5)=5²=25 ইত্যাদি।
লিমিটঃ
কিছু কিছু ফাংশন আছে যারা
আমাদেরকে ঝামেলায় ফেলে
দেয়। আমরা যদিও বুঝতে পারি, মান
কত হওয়া ‘উচিত’, কিংবা কত ‘হতে
চলেছে’ কিন্তু জোর দিয়ে বলতে
পারি না। সেই ঝামেলাগুলো
থেকে মুক্তি দিতেই লিমিট
ব্যাপারটার উদ্ভব। যেমন একটা
ফাংশন চিন্তা করা যাক
f(x)=(x²-9)/(x-3)
এই ফাংশনে x এর মান 3 হলে
ফাংশনটার মান কত হবে ? 3 বসালে
উপরেও শূন্য এসে পড়ে , নিচেও শূন্য
এসে পড়ে। ০/০ এর মান কত সেটা
আমরা বলতে পারি না। কারণটা
বোঝা কঠিন নয়। ১৫/৩ কথাটার
মানে হলো ৩ কে কত দিয়ে গুণ করলে
১৫ হয়। কত দিয়ে? ৫ দিয়ে। তাহলে
১৫/৩=৫
২৪/৪ মানে ৪ কে কত দিয়ে গুণ দিলে
২৪ হয়। সেটা কত- ৬। তাহলে ২৪/৪=৬ ।
তাহলে ০/০ মানে হলো ০ কে কত
দিয়ে গুণ দিলে ০ হয়। এখন ০ কে ১
দিয়ে গুণ করলেও ০ হয়, ২ দিয়ে গুণ
করলেও শূন্য হয়, এমন ৩,৪,৫,৬ যা দিয়েই
গুণ করা যাক, শূন্যই হয়। তাহলে ০/০ এর
মান ১,২,৩,৪,৫…সবকিছুই হতে পারে!
কিন্তু সেটা তো ভালো কিছু হলো
না। তাহলে ০/০ এর মান কত আমরা
নিশ্চিত করে বলতে পারছি না। এমন
০/০ আকারকে বলে অনির্নেয়
(Indeterminate form)। এরকম অনির্নেয়
আকার আরও বেশ কিছু আছে যেমন, 0 0 ,
1 ∞ , ∞ − ∞, ∞/∞, 0 × ∞ এবং ∞ 0 . এরাও
আসলে অনেক রকম মান দেয়।
যাহোক আমরা আমাদের ফাংশন f
(x)=(x²-9)/(x-3) এর কাছে ফিরে যাই।
আমরা দেখতে পেলাম এর মান যখন 3
তখন এই ফাংশন আমাদের ০/০ এমন
একটা অনির্ণেয় আকার দিচ্ছে।
কিন্তু এটার মান কত হলে সবচেয়ে
ভালো হতো সেটা কী চিন্তা করা
যায়। চেষ্টা করে দেখা যাক। ৩ তো
ইনপুট দিতে পারি না, ৩ এর খুব
কাছাকছি কোন মান দিয়ে দেখি
কত পাওয়া যায়। আমরা দেখি ,
f(2,999)=5,999
f(2,9999)=5,9999
f(3,001)=6,001
f(3,00001)=6,00001
অর্থাৎ x এর মান ৩ এর কাছাকাছি
কিছু দিলে পুরো ফাংশনের মানটা
৬ এর কাছাকছি থাকছে! আমরা ৩ একটু
আগে থেকে শুরু করে ২,৯৯৯, ২,৯৯৯৯
এভাবে যত ৩ এর দিকে আগাচ্ছি ,
পুরো ফাংশনের মানটা ৫,৯৯৯,৫,৯৯৯৯
এভাবে ৬ এর দিকে আগাচ্ছে।
আবার ৩ এর একটু পর থেকে শুরু করেও
যদি ৩,০০১, ৩,০০০০১ এভাবে আম্রা
একটু করে কমে কমে ৩ এর দিকে সরে
আসি, পুরো ফাংশনের মানটা কমে
কমে সেই ৬ এর দিকেই যাচ্ছে!
এখন আমরা বুঝতে পারছি x এর মান ৩
হলে ফাংশনটার মান কত হওয়া উচিত
ছিল । নিশ্চয়ই ৬। কিন্তু সেটা হতে
পারছে না, কারণ উপরে নিচে শূন্য
হয়ে যাচ্ছে । কিন্তু এই যে আমরা
বুঝতে পারছি যে এটা আর কেউ না ৬
এর দিকেই আগাচ্ছে, এটাকে তো
গণিতবিদেরা অস্বীকার করতে
পারেন না! তাই তারা নতুন এক
গণিতের জন্ম দিলেন। আবিষ্কৃত হলো
লিমিট।
এবার তারা লিখলেন এভাবে
এর মানে হলো x এর মান যখন ৩ এর
‘খুউউউব কাছাকাছি’ পৌঁছাবে তখন
(x²-9)/(x-3) ফাংশনটার মান যার
‘খুউউউব কাছাকাছি’ পৌঁছাবে সে
হলো ৬ । এই কথাটা খুব নিরাপদ কথা ।
আমরা জানি x এর মান সরাসরি ৩
দেয়া যায় না, অনির্ণেয় হয়ে যায়।
৩ এর খুব কাছাকাছি দিতে তো আর
আপত্তি নেই। অর্থাৎ ৩ হলে
ফাংশনের মান কত হয়, সে বিতর্কে
আমরা যাব না , আমরা বলব ৩ এর
কাছে গেলে ফাংশনটা ৬ এর
কাছে যাবে।
এখানে আমরা দেখি যে ৩ এর একটু
আগে থেকে শুরু করে ৩ এর দিকে
গেলেও যেমন ফাংশনটার মান ৬ এর
কাছে যায়, ৩ এর একটু পরে থেকে শুরু
করে কমে কমে ৩ এর কাছে এলেও
ফাংশনটা ঠিক সেই ৬ এর কাছেই
এগিয়ে আসে। এক্ষেত্রে ঘটনাটা
ভালো।
কিন্তু কিছু কিছু ক্ষেত্র আছে যখন
এমনভাবেও কোন সুরাহা করা যায়
না। যেমন যদি প্রশ্ন করা হয় x এর যখন ০
তখন g(x)=|x|/x এই ফাংশনের মান কত?
নিশ্চিতভাবেই আমরা দেখতে
পাচ্ছি, উপরে ০ , নিচেও শূন্য, তাই
এটাও অনির্ণেয়। তখন মামাদের
মাথায় আসবে লিমিটের কথা, যে
আমাদেরকে এই রকম ক্ষেত্রগুলোতে
সাহায্য করে। তাহলে আগের মতোই
চিন্তা করি । x এর মান ০ এর একটু আগে
থেকে শুরু করে একবার ০ এর
কাছাকাছি পৌঁছাই আর আরেকবার
০ এর একটু পরে থেকে শুরু করে কমে
কমে ০ এসে পৌঁছাই। দেখি এতে
ফাংশনের মান কেমন পাওয়া যায়।
অর্থাৎ এরা বড়ই বেয়াড়া। শূন্যের
আগের যেকোন সংখ্যার জন্যেই
পাওয়া গেল -১ আর শূন্যের পরের
যেকোন সংখ্যা জন্যে পাওয়া গেল
+১। তার মানে হলো এরা একটা
জায়গায় মিলতে পারল না।
আগেরবার যেমন ৩ এর আগে পরে
দুইখেত্রেই তারা ৬ এই পৌঁছেছিল ,
এখন সেটা হলো না। এই অবস্থায়
আমরা বলি যে এখানে লিমিটের
অস্তিত্ব নেই।
তার মানে সবকিছুরই একটা সীমা
আছে, এটা আসলে ঠিক না।
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  http://vaild.work @ SELL FULLZ DEAD UK DUMPS track 1^2 CLONED CARDS ATM INFO SSN DOB/ legitdumps79 0 75 05-13-2025, 09:07 AM
Last Post: legitdumps79
  [পড়াশোনা] প্রাথমিক বিদ্যালয়ের কারিকুলাম ভুক্ত ১৩টি গানের অডিও/ mp3 Hasan 0 3,498 08-03-2019, 07:56 PM
Last Post: Hasan
  ১০ হাজার ছাত্রীর জন্য সাইবার নিরাপত্তা সচেতনতা প্রশিক্ষণ Hasan 1 3,344 04-20-2017, 01:52 AM
Last Post: Muntasir
  (ছোটদের গল্প) টুনটুনি ও রাজার গল্প Maghanath Das 0 3,214 02-19-2017, 08:44 PM
Last Post: Maghanath Das
  Early Rising paragraph for students Maghanath Das 0 2,293 02-19-2017, 08:43 PM
Last Post: Maghanath Das
  স্মরণশক্তি বৃদ্ধি করুন ৭ উপায়ে Maghanath Das 0 2,555 02-19-2017, 08:32 PM
Last Post: Maghanath Das
  গণিতে A+ পাওয়ার সহজ উপায়। Maghanath Das 0 3,082 02-19-2017, 08:29 PM
Last Post: Maghanath Das
  [বিসিএস/জব প্রস্তুতি] কনজরে ৬১টি গুরুত্বপূর্ণ প্রশ্নে ভিটামিন ও খাদ্য বিষয়ক সকল তথ্য Maghanath Das 0 2,364 02-19-2017, 08:27 PM
Last Post: Maghanath Das
  Science=”Chemistry “ Maghanath Das 0 2,568 02-19-2017, 08:26 PM
Last Post: Maghanath Das
  এক্সাম হলে প্রশ্ন পাওয়ার পর ছাত্রদের মনের কিছু কথা… Maghanath Das 0 2,343 02-19-2017, 08:25 PM
Last Post: Maghanath Das

Forum Jump:


Users browsing this thread: 1 Guest(s)